Tuesday, January 19, 2010

Applications

Artificial intelligence has successfully been used in a wide range of fields including medical diagnosis, stock trading, robot control, law, scientific discovery, video games, toys, and Web search engines. Frequently, when a technique reaches mainstream use, it is no longer considered artificial intelligence, sometimes described as the AI effect. It may also become integrated into artificial life.

Competitions and prizes

There are a number of competitions and prizes to promote research in artificial intelligence. The main areas promoted are: general machine intelligence, conversational behavior, data-mining, driverless cars, robot soccer and games.

Platforms

A platform (or "computing platform")is defined by Wikipedia as "some sort of hardware architecture or software framework (including application frameworks), that allows software to run." As Rodney Brooks pointed out many years ago, it is not just the artificial intelligence software that defines the AI features of the platform, but rather the actual platform itself that affects the AI that results, ie, we need to be working out AI problems on real world platforms rather than in isolation.

A wide variety of platforms has allowed different aspects of AI to develop, ranging from expert systems, albeit PC-based but still an entire real-world system to various robot platforms such as the widely available Roomba with open interface

Philosophy


Mind and Brain portal

Artificial intelligence, by claiming to be able to recreate the capabilities of the human mind, is both a challenge and an inspiration for philosophy. Are there limits to how intelligent machines can be? Is there an essential difference between human intelligence and artificial intelligence? Can a machine have a mind and consciousness? A few of the most influential answers to these questions are given below.

Turing's "polite convention"
If a machine acts as intelligently as a human being, then it is as intelligent as a human being. Alan Turing theorized that, ultimately, we can only judge the intelligence of a machine based on its behavior. This theory forms the basis of the Turing test.
The Dartmouth proposal
"Every aspect of learning or any other feature of intelligence can be so precisely described that a machine can be made to simulate it." This assertion was printed in the proposal for the Dartmouth Conference of 1956, and represents the position of most working AI researchers.
Newell and Simon's physical symbol system hypothesis
"A physical symbol system has the necessary and sufficient means of general intelligent action." Newell and Simon argue that intelligences consists of formal operations on symbols. Hubert Dreyfus argued that, on the contrary, human expertise depends on unconscious instinct rather than conscious symbol manipulation and on having a "feel" for the situation rather than explicit symbolic knowledge. (See Dreyfus' critique of AI.)
Gödel's incompleteness theorem
A formal system (such as a computer program) can not prove all true statements. Roger Penrose is among those who claim that Gödel's theorem limits what machines can do. (See The Emperor's New Mind.)
Searle's strong AI hypothesis
"The appropriately programmed computer with the right inputs and outputs would thereby have a mind in exactly the same sense human beings have minds." Searle counters this assertion with his Chinese room argument, which asks us to look inside the computer and try to find where the "mind" might be.
The artificial brain argument
The brain can be simulated. Hans Moravec, Ray Kurzweil and others have argued that it is technologically feasible to copy the brain directly into hardware and software, and that such a simulation will be essentially identical to the original.[160]

Prediction

AI is a common topic in both science fiction and in projections about the future of technology and society. The existence of an artificial intelligence that rivals human intelligence raises difficult ethical issues and the potential power of the technology inspires both hopes and fears.

In fiction, AI has appeared fulfilling many roles including; a servant (R2D2 in Star Wars), a law enforcer (K.I.T.T. "Knight Rider"), a comrade (Lt. Commander Data in Star Trek), a conqueror/overlord (The Matrix), a dictator (With Folded Hands), an assassin (Terminator), a sentient race (Battlestar Galactica/Transformers), an extension to human abilities (Ghost in the Shell) and the savior of the human race (R. Daneel Olivaw in the Foundation Series).

Mary Shelley's Frankenstein[161] considers a key issue in the ethics of artificial intelligence: if a machine can be created that has intelligence, could it also feel? If it can feel, does it have the same rights as a human? The idea also appears in modern science fiction: the film Artificial Intelligence: A.I. considers a machine in the form of a small boy which has been given the ability to feel human emotions, including, tragically, the capacity to suffer. This issue, now known as "robot rights", is currently being considered by, for example, California's Institute for the Future, although many critics believe that the discussion is premature.

The impact of AI on society is a serious area of study for futurists. Academic sources have considered such consequences as: a decreased demand for human labor, the enhancement of human ability or experience, and a need for redefinition of human identity and basic values. Andrew Kennedy in his musing on the evolution of the human personality considered that artificial intelligences or 'new minds' are likely to have severe personality disorders, and identifies four particular types that are likely to arise: the autistic, the collector, the ecstatic, the victim and suggests that they will need humans because of our superior understanding of personality and the role of the unconscious.

Several futurists argue that artificial intelligence will transcend the limits of progress. Ray Kurzweil has used Moore's law (which describes the relentless exponential improvement in digital technology with uncanny accuracy) to calculate that desktop computers will have the same processing power as human brains by the year 2029, and that by 2045 artificial intelligence will reach a point where it is able to improve itself at a rate that far exceeds anything conceivable in the past, a scenario that science fiction writer Vernor Vinge named the "technological singularity"

Robot designer Hans Moravec, cyberneticist Kevin Warwick and inventor Ray Kurzweil have predicted that humans and machines will merge in the future into cyborgs that are more capable and powerful than either. This idea, called transhumanism, which has roots in Aldous Huxley and Robert Ettinger, has been illustrated in fiction as well, for example in the manga Ghost in the Shell and the science fiction series Dune.

Edward Fredkin argues that "artificial intelligence is the next stage in evolution," an idea first proposed by Samuel Butler's "Darwin among the Machines" (1863), and expanded upon by George Dyson in his book of the same name in 1998.

Pamela McCorduck writes that all these scenarios are expressions of the ancient human desire to, as she calls it, "forge the gods.

No comments:

Post a Comment